Install GPU/CUDA/
1. Checking Server spec
suminlim@universe ~$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.04.5 LTS
Release: 16.04
Codename: xenial
suminlim@universe ~$ python --version
Python 2.7.12
suminlim@universe ~$ cat /var/log/dpkg.log.1 | grep nvidia
2018-12-10 17:08:13 install libnvidia-container1:amd64 <none> 1.0.0-1
2018-12-10 17:08:13 status half-installed libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:13 status unpacked libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:13 status unpacked libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:13 install libnvidia-container-tools:amd64 <none> 1.0.0-1
2018-12-10 17:08:13 status half-installed libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:13 status unpacked libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:13 status unpacked libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:14 install nvidia-container-runtime-hook:amd64 <none> 1.4.0-1
2018-12-10 17:08:14 status half-installed nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:14 status unpacked nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:14 status unpacked nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:14 install nvidia-container-runtime:amd64 <none> 2.0.0+docker18.09.0-1
2018-12-10 17:08:14 status half-installed nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:14 status unpacked nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:14 status unpacked nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:14 install nvidia-docker2:all <none> 2.0.3+docker18.09.0-1
2018-12-10 17:08:14 status half-installed nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:14 status unpacked nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:14 status unpacked nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:14 configure libnvidia-container1:amd64 1.0.0-1 <none>
2018-12-10 17:08:14 status unpacked libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:14 status half-configured libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:14 status installed libnvidia-container1:amd64 1.0.0-1
2018-12-10 17:08:14 configure libnvidia-container-tools:amd64 1.0.0-1 <none>
2018-12-10 17:08:14 status unpacked libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:14 status half-configured libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:14 status installed libnvidia-container-tools:amd64 1.0.0-1
2018-12-10 17:08:15 configure nvidia-container-runtime-hook:amd64 1.4.0-1 <none>
2018-12-10 17:08:15 status unpacked nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:15 status unpacked nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:15 status half-configured nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:15 status installed nvidia-container-runtime-hook:amd64 1.4.0-1
2018-12-10 17:08:15 configure nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1 <none>
2018-12-10 17:08:15 status unpacked nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:15 status half-configured nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:15 status installed nvidia-container-runtime:amd64 2.0.0+docker18.09.0-1
2018-12-10 17:08:15 configure nvidia-docker2:all 2.0.3+docker18.09.0-1 <none>
2018-12-10 17:08:15 status unpacked nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:15 status unpacked nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:15 status half-configured nvidia-docker2:all 2.0.3+docker18.09.0-1
2018-12-10 17:08:15 status installed nvidia-docker2:all 2.0.3+docker18.09.0-1
2. Open MPI
https://www.open-mpi.org/faq/?category=building#easy-build
shell$ gunzip -c openmpi-4.0.0.tar.gz | tar xf - shell$ cd openmpi-4.0.0 shell$ ./configure --prefix=/usr/local <...lots of output...> shell$ make all install
Conventional Installation
https://towardsdatascience.com/tensorflow-gpu-installation-made-easy-use-conda-instead-of-pip-52e5249374bc
pytorch와 tensorflow-gpu를 설치한다
conda create --name tf_gpu tensorflow_gpu
conda activate tf_gpu
conda install tensorflow-gpu
conda install -y pytorch torchvision -c pytorch
source deactivate
https://dreamgonfly.github.io/2018/01/30/conda-pytorch.html
3. CUDA install
Installation Instructions: | |
PyTorch Conda base https://dreamgonfly.github.io/2018/01/30/conda-pytorch.html https://beerensahu.wordpress.com/2018/03/20/pytorch-installation-guide-for-ubuntu/ $ python3 -m venv pytorch-env $ source pytorch-env/bin/activate |
Reference links for Installation
http://www.kwangsiklee.com/2017/07/우분투-16-04에서-cuda-성공적으로-설치하기/
http://walking-on-the-life.tistory.com/9