1. Ollama LLM 여러 모델 로컬에서 돌릴 수 있도록 만든 시스템
https://github.com/jmorganca/ollama
GitHub - jmorganca/ollama: Get up and running with Llama 2 and other large language models locally
Get up and running with Llama 2 and other large language models locally - GitHub - jmorganca/ollama: Get up and running with Llama 2 and other large language models locally
github.com
Ollama
Get up and running with large language models, locally.
ollama.ai

2. https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
HuggingFaceH4/zephyr-7b-beta · Hugging Face
🪁 HuggingFaceH4/zephyr-chat 🌖 reach-vb/musicgen-prompt-upsampling 👀 NerdN/open-gpt-Image-Prompt-Generator 💻 ysharma/Zephyr-Playground 🚀 limcheekin/zephyr-7B-beta-GGUF 📉 library-samples/zephyr-7b 👩🏻🌾 smart-fellah/Smart-fellah
huggingface.co
model.safetensors.index.json: 100%|██████████| 23.9k/23.9k [00:00<00:00, 5.07MB/s] model-00001-of-00008.safetensors: 100%|██████████| 1.89G/1.89G [03:03<00:00, 10.3MB/s] model-00002-of-00008.safetensors: 100%|██████████| 1.95G/1.95G [02:54<00:00, 11.1MB/s] model-00003-of-00008.safetensors: 100%|██████████| 1.98G/1.98G [02:55<00:00, 11.3MB/s] Downloading shards:
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16) #device_map="auto"
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
https://www.promptingguide.ai/techniques/rag
Retrieval Augmented Generation (RAG) – Nextra
A Comprehensive Overview of Prompt Engineering
www.promptingguide.ai
4.
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
Open-Orca/Mistral-7B-OpenOrca · Hugging Face
🚀 limcheekin/Mistral-7B-OpenOrca-GGUF 🌊 Felladrin/Web-LLM-Mistral-7B-OpenOrca 🔥 EmbeddedLLM/chat-template-generation 💻 decunde/Open-Orca-Mistral-7B-OpenOrca 🏆 Prakash1015/Open-Orca-Mistral-7B-OpenOrca 🏆 bonomg/Open-Orca-Mistral-7B-OpenOrc
huggingface.co
5. https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.1 · Hugging Face
😻 osanseviero/mistral-super-fast 😻 openskyml/mistral-7b-chat 😻 DarwinAnim8or/Mistral-Chat 🚀 limcheekin/Mistral-7B-Instruct-v0.1-GGUF 📚 pragneshbarik/ikigai-chat 😻 SoAp9035/Mistral-7B-Instruct-v0.1-Fast-Chat 🦜 joshuasundance/langchain-s
huggingface.co
GitHub - rahulnyk/knowledge_graph: Convert any text to a graph of knowledge. This can be used for Graph Augmented Generation or
Convert any text to a graph of knowledge. This can be used for Graph Augmented Generation or Knowledge Graph based QnA - GitHub - rahulnyk/knowledge_graph: Convert any text to a graph of knowledge....
github.com
https://towardsdatascience.com/how-to-convert-any-text-into-a-graph-of-concepts-110844f22a1a
How to Convert Any Text Into a Graph of Concepts
A method to convert any text corpus into a Knowledge Graph using Mistral 7B.
towardsdatascience.com
'딥러닝' 카테고리의 다른 글
u-net (0) | 2023.12.30 |
---|---|
Mastering-Image-Segmentation-With-PyTorch-using-Real-World-Projects (0) | 2023.12.25 |
RF (0) | 2023.11.23 |
RFL books (0) | 2023.11.15 |
SCPD stanford online (0) | 2023.11.14 |